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Abstract  We address the following scenario: a single target moves through a 
field of stationary sensors with known locations. At each time epoch, each sensor 
is either active or not; each active sensor outputs either target detected or not 
detected. The probability of target detection is a decreasing function of the distance 
from a sensor to the target. A particle filter is used to track the target through 
the sensor field using all active sensor outputs. A probabilistic neural network is 
used to determine which sensors should be active. The activation function for 
PNN is the probability of detection for the individual sensor as each node in the 
hidden layer directly represents one of the sensors in the field. The input to the 
PNN is a modified version of the estimated target state vector; the modification 
to the state vector is the addition of a confidence term, which describes the 
confidence required prior to performing the detections for the subsequent epoch. 
The output of the PNN is a radius about the previous target location estimate 
within which to activate sensors to achieve the desired confidence. For a given 
location in the sensor field the overall probability of detection using distributed 
detection is several orders of magnitude higher than when using a single sensor; 
this is due to the overlapping probability of detection regions for the various 
sensors. Monte Carlo simulations show that the configuration strategy leads to 
a significant (averaging 30%) reduction in the required number of active sensors 
with little degradation in the tracker performance. The estimation is performed 
using a particle filter. 
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ABSTRACT 

This paper describes a novel application of a 
probabilistic neural network for overcoming the 
computational complexity involved in performing sensor 
configuration management in a collaborative sensor 
network. We consider the problem of reliably tracking a 
target moving through a field of stationary sensors by 
fusing the measurements returned from the distributed 
array of sensors while conserving power by minimizing the 
number of sensors participating in the decision-making at 
each step, which is a challenging problem of significant 
current interest. The twin, and often conflicting, 
requirements of high tracking accuracy (achievable by 
recruiting more sensors in order to develop fused 
decisions) and minimization of network latency 
(performing decisions using measurements from only a 
small subset of sensors) place a major emphasis on 
developing optimal strategies for sensor configuration 
management in such application scenarios. Recently 
suggested approaches to this problem typically employ 
Bayesian Networks and Influence Diagrams, which are 
computationally intensive and are often prohibitive for real 
time applications, particularly when the number of sensors 
involved is large. To overcome the computational 
complexity, we propose the use of a probabilistic neural 
network (PNN). The task for the PNN is to produce a 
distance measure (a radius, for instance) about a target 
location estimate within which to query sensors for 
observations by using the previous state estimate of the 
target as input. By integrating the PNN with a particle filter 
implementation of a tracking algorithm, we develop a 
collaborative distributed tracking scheme. Performance 
evaluation results are presented to demonstrate the benefits 
from sensor fusion (improvement of tracking accuracy) 
and reduction of latency (saving in the number of sensors 
deployed for accomplishing the task) in chosen tracking 
scenarios. 

 
I. Introduction 

 
The availability of efficient, and rather inexpensive, 

sensors that can be tuned to a wide range of operating 
conditions enables a multitude of these sensors to be 
deployed in an array or in multiple arrays to cover a large 
area under surveillance. For collaborative decision-making 
for the detection, discrimination, localization, and tracking 

of targets of interest, these sensors need to be networked 
for exchange of either raw measurements or some 
decisions resulting from processing the data, or for 
exchange of information with a centralized monitoring 
station at a remote location. Sensors integrated with 
microprocessors and radios are able to communicate 
wirelessly as connected computing nodes.  Such nodes are 
capable of making observations about the environment, 
and by communicating with other nodes work 
collaboratively to analyze the data.  The wireless nature of 
these ad hoc networks allows for widely distributed and 
massively parallel systems, which only require limited 
processing ability at the individual nodes. Due to the 
possibility of collaboration, these systems are capable of 
resulting in significantly increased overall processing 
ability while ensuring improved detection probability and 
tracking accuracy and reducing the probability of false 
alarms. 

 The use of sensor fusion methods for 
collaborative decision-making has been well appreciated 
[1]. In a typical sensor fusion scheme, measurements from 
multiple sensors are integrated in order to achieve a 
common goal and obtain an overall performance that is 
better than that could result from individual sensors acting 
alone. Depending on the architecture employed for the 
integration, fusion can be performed at the data level 
(combining raw data output by the sensors), or at the 
feature level (combining of features extracted from each 
data stream), or at the decision level (combining of final 
decisions made from exploiting data measured by each 
sensor). Although the collaborative processing in a sensor 
network also involves fusing data from various sensors, 
what makes this process different from traditional sensor 
fusion methods is the ad hoc nature of the network, viz. the 
collaborating partners for each sensor can be varied from 
one instant to another as decisions are made. Furthermore, 
the signal processing steps required to produce any 
decision (which may include ordering the data from 
different sensors, extracting features, fusing the features, 
and computing the decision) can all be performed at any 
given sensor at a given instant, as distinct from using a 
fixed architecture for fusion where most of the signal 
processing takes place at a centralized location which 
receives the measurements from the various sensors. It is 
the distributed nature of sensor placement coupled with the 
dynamically varying locations at which sensor fusion and 
decision-making functions take place that makes the 
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operation of a collaborative sensor network significantly 
more challenging. The crux of the problem is to devise an 
intelligent scheme for “sensor configuration management” 
that provides a mechanism for each sensor needing to 
make a decision to recruit collaborating partners within its 
neighborhood in a dynamic manner.  

A major practical concern in the employment of 
ad hoc sensor networks is to constrain the average power 
required by the network to perform the needed task, which 
requires limiting the number of active sensors at any given 
time. Unfortunately, however, reducing the number of 
sensor nodes could result in a reduction of the surveillance 
and tracking accuracy, thus requiring intelligent 
approaches to minimize the “network latency”. The twin 
goals of achieving improved performance by sensor fusion 
and minimizing network latency (i.e. ensuring only limited 
degradation in overall performance due to employing only 
a subset of available sensors) make sensor configuration 
management particularly challenging.   

Some recently developed approaches to address 
the configuration management problem propose use of 
Bayesian Networks, which facilitate incorporation of 
expert knowledge in the configuration process [2].  This 
formalism allows one to construct an Influence Diagram to 
evaluate the utility of a decision made at each sensor node.  
The predicted utility of a particular decision is then used to 
obtain a network configuration from the perspective of the 
individual decision-making node.  For addressing the 
specific problem of surveillance and tracking, one can then 
employ an optimization framework in order to minimize 
the predicted error while keeping the number of sensors 
low. Unfortunately however, the use of influence diagrams 
is computationally intensive and is often prohibitive for 
real time applications, particularly when the number of 
sensors involved is large.  

 
The computational complexities involved in the 

configuration management can be effectively addressed by 
using a probabilistic neural network (PNN), as will be 
shown in this paper. The approach used here exploits the 
implied correspondence that exists between a Bayesian 
Network model and that provided by the PNN. While the 
use of a PNN by itself to perform sensor configuration 
management may be quite demanding as the PNN requires 
training prior to implementation, combining the Bayesian 
Network and PNN models has significant advantages, a 
feature that will be exploited in the present work.  In 
particular, by combining these methods one is able to 
significantly reduce the prior training required for the PNN 
while avoiding the intensive computation that may be 
required for obtaining inference from the Bayesian 
Network of the probability that a particular configuration 
of sensor nodes will provide an accurate target state 
estimate. For facilitating developmental details and to 
serve as a vehicle for quantitative performance evaluation, 

the specific problem of tracking a vehicle entering a sensor 
field will be addressed in this paper. The task for the PNN 
as used here is to produce a distance measure (a radius, for 
instance) about a target location estimate within which to 
query sensors for observations by using the previous state 
estimate of the target as input. Performance evaluation 
results will be presented to demonstrate the benefits from 
sensor fusion (improvement of tracking accuracy) and 
reduction of latency (saving in the number of sensors 
deployed for accomplishing task) in chosen tracking 
scenarios. 

II. Description of Tracking Scenario 

To perform tracking of a moving object in a 
sensor field, global information in both space and time 
must be collected and analyzed over a time horizon and 
over a spatial region. Each individual node however can 
provide only spatially local information. Furthermore, due 
to power limitation, temporal processing is feasible over 
only small time intervals.  This requires collaborative 
processing of collected information. For collaborative 
decision-making to achieve optimal tracking performance, 
we consider the following scenario. In the plane in which 
the target moves, there are N sensors uniformly placed 
whose locations are known.  At each time, each sensor may 
be configured to be active or inactive.  Active sensors 
collect M samples of a received signal. Each sensor node 
that detects an event of interest is capable of running 
independently the needed signal processing algorithms in 
order to maintain contact with the target. However, for 
improving its own performance, each sensor will have the 
ability to query its neighbors for their assessment of the 
situation. Upon receipt of assessments from the queried 
neighbors, it updates its own decision, which will in turn 
be reported to the neighbors or to a remote monitoring 
station.  

 
The schematic for the overall tracking scheme 

used in this paper is shown in Figure 1.  The tracking 
process begins with all sensors making observations. If 
some sensor has detected a target, then all the observations 
are reported to the tracking filter that is configured as a 
particle filter [3]. The particle filter, which performs 
Bayesian state estimation, is initialized with a uniform 
prior probability distribution.  The particles are then re-
sampled according to the observations presented.   

 
Figure 1 - Block Diagram of Collaborative Tracker. 
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As noted earlier, our objective in sensor 
configuration is to accurately track the target through the 
distributed sensor network while at the same time minimize 
the number of active sensors (only active sensors are 
configured to provide observations, else they go to a sleep 
mode to conserve power). Consequently, activation of 
sensors within a specified distance from the current target 
position estimate is of importance. Several interesting 
formulations of this problem are possible in order to 
develop the needed tools for ensuring a seamless 
determination of the “sensor activation region” as the 
target of interest moves within the field under surveillance. 
These range from simple heuristic procedures, in which 
sensors within a specified distance from the estimated 
target position are queried (with the distance chosen 
adaptively based on the accuracy of the target position 
estimate) to more sophisticated procedures that involve 
solving an optimization problem for a “sensor 
configuration parameter” (say, the radius of a spherical 
region). Since keeping up with fast moving objects is of 
interest for real-time implementation, inclusion of 
procedures that enable breaking the computational 
complexity is of particular interest. A closely related 
problem within the overall sensor configuration 
management is the development of needed protocols for 
the “transfer of leadership” from one sensor to another in a 
“moving leader strategy” in order to continue tracking with 
the same efficiency as the target moves from one region to 
another. This problem will not be addressed in this paper. 

 
2.1 Models for Target Motion and Sensor Observation 

 
The tracking scenario consists of a single target 

moving through a field of stationary sensors with known 
locations.  At each time epoch, each sensor is either active 
or not; each active sensor outputs either “target detected” 
or “target not detected”.  The probability of target 
detection is a decreasing function of the distance from a 
sensor to the target. A target state estimation scheme is 
used to track the target through the sensor field using all 
active sensor outputs. For designing the target state 
estimator, a simple motion model described below will be 
used. 

The target is constrained to motion in a plane.  
The target state is modeled using position and velocity at 
time k as measured in Cartesian coordinates.  A discrete-
time linear system driven by white Gaussian noise is used 
to model the target dynamics [4]. We arrange the target 
position, r, and the target velocity, c, as vectors in 
Cartesian coordinates r[k] and c[k].  Using these vectors, 
we create a target state vector kx defined by 
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The discrete-time system model represents 
snapshots of position and velocity, which evolve 
continuously at evenly spaced instants of time 0t , 1t , etc.; 
spaced ?  time units apart. The system dynamics are given 
by  
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where kw is a vector white Gaussian noise process with 
constant covariance matrix Q . 

The sensor receives energy from the target which 
is then compared to a threshold to determine that an 
observation has been made.  We denote the energy per 
sample of the signal received from the target as )(2 dTσ .  
This energy is inversely proportional to the square of the 
distance d between the target and the sensor, i.e. 

d
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σ
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0Tσ  is the energy per sample of the 

target signal at a distance of 1 unit.  The energy per sample 

of the noise at each sensor is denoted by 2
Nσ . 

In the tracking scenario considered here, N 
sensors are at known locations after being uniformly 
placed in the region.  The model for sensor observations 
[5] is given by the probability of detection and the 
probability for false alarm, assumed in the form  
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where
2

2

0
0
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TSNR
σ

σ
= is the signal to noise ratio at unit 

distance from sensor to target, β is a parameter chosen to 

give the desired probability of false alarm, and ( )⋅⋅Γ ,  is 
the incomplete gamma function.  Figure 2 shows a typical 
plot of the probability of detection ( )dPD as a function of 
distance d. 

 
Figure 2 - Probability of detection as a function of 

 target-sensor distance. 
 
2.2 Particle Filter for Tracking 

The primary goal of the tracking algorithm is to 
provide the estimate of target state by processing the 
sensor measurements. Each sensor activated by the sensor 
configuration management algorithm independently 
produces observations, which are then integrated into the 
global position estimate of the target produced by the 
tracking algorithm. While several alternate approaches 
(such as Kalman filters [6], extended Kalman filters, neural 
network-based nonlinear estimation schemes [7]) are 
possible for designing systematic tracking algorithms, we 
select an implementation based on a Particle Filter (PF) for 
the present application. The PF implements a sequential 
Monte-Carlo estimation procedure [3] based on point-mass 
(or particle) representations of probability densities by 
attempting to compute a sampled representation of the 
probability distribution, )|( 1−kk xxp , as given by the 
system dynamics in Eq. (2). 

A set of arbitrarily selected particles, { })( j
kx , each 

of which forms an independent hypothesis of the target 
state at a given time, k, are selected, and a set of weights, 

{ })( j
kw , computed from the observations returned from 

sensors, is used to weight the particles to provide an 
approximation to the posterior probability distribution of 
the target state. The PF sequentially updates the particles 
as time progresses and correspondingly updates the set of 
weights. The state estimate, 1ˆ −kx , and its associated 

covariance matrix, kkP | , are then computed using 
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  Since a weighted averaging is performed, 
selection of a large set of particles in effect contributes to a 
good approximation to the posterior distribution function. 
However, this also increases the computational burden. 
More details on the state estimation properties of PFs are 
omitted due to page restrictions; they may however be 
found in [9]. 

III. Probabilistic Neural Network for Configuration 
Management 

The task for the PNN is to identify a “sensor 
activation region” given the current position estimate of 
the target in order to determine which sensors should be 
active.  The neural network is configured with a hidden 
layer node for each sensor node in the sensor field and is 
initialized with all connections weights set to unity.  The 
variance of the initial estimate is then used to modify the 
connection weights.  The activation function of the hidden 
layer nodes is the probability of detection curve for the 
associated sensor as given in Eq. (4) and has a threshold of 
70%, arbitrarily chosen.  As each node in the hidden layer 
directly represents one of the sensors in the field, the 
network then represents a PDF for the probability of 
detection for the entire region. One may refer to [8] for 
details on the properties of PNNs.   

The input to the PNN is a modified version of the 
estimated target estimate, 

[ ]
kkreqinp PD NPkr
|

ˆx̂ k σ⋅⋅⋅=    (7) 

where [ ]kr̂  is the prior target position estimate, 
reqDP is the 

required probability of detection value for performing the 
detections during the subsequent epoch, N  is a 
normalizing factor and 

kkP |
σ is the variance of the 

Figure 3 - Structure of PNN 



covariance matrix for the prior estimate.  The use of 

kkP |
σ in computing the input to PNN provides a mechanism 

for taking into account the quality of the prior estimate. 
Adjusting the connection weights in this way has the effect 
of modifying the threshold of the associated hidden layer 
nodes.   

 

Figure 4 - Example of sensor activation region about 
previous target state estimate. 

The output of the PNN is a radius parameter, kr , 
specifying the activation region around the previous target 
location estimate, kkx |ˆ , within which to activate sensors in 

order to achieve the desired probability of detection.  This 
parameter bounds the maximum distance of an activated 
node to the current target position estimate and is used as 
the basis for querying sensors for the subsequent epoch. In 
this way, the hidden layer nodes of the PNN represent the 
effective probability of detection of a target given a 
previous state estimate and the current sensor 
configuration, represented by ),ˆ|( 1 kkd cxxP − , where x is 

the target location, 1ˆ −kx denotes the previous state estimate 

and kc denotes the current network configuration.  Figure 5 

depicts the effective overall dP  for the case of uniform 
sensor layout. 

     (a)         (b) 

 

Figure 5 – (a) Contour and (b) Volumetric plots of the 
overall PDF for Pd created by PNN. 

IV. Performance Evaluation 
The performance of the present configuration 

management scheme was evaluated using two sets of 500 
simulation runs: one set with all sensors active and the 

other set by implementing the present configuration 
management strategy. The target was tracked by an array 
of 50 sensors distributed in a 1km square area. For 
providing ground truth to test the estimator quality, a true 
target trajectory was generated for 25 time steps. In each 
set of 500 simulation runs, the target track was estimated 
from simulated sensor detections in the two cases (i) with 
all sensors enabled, and (ii) with only those sensors within 
the activation regions provided by the PNN. 

For a given location within the sensor field, the 
overall probability of detection resulting from the 
collaborative distributed detection scheme is several orders 
of magnitude higher than when using a single sensor; this 
is due to the overlapping probability of detection regions 
for the various sensors.  Monte Carlo simulations show 
that the configuration management strategy leads to a 
significant (averaging 30%) reduction in the required 
number of active sensors with little degradation in the 
tracker performance.  The sensor locations, the true target 
track, and the mean estimated tracks obtained with 
configuration-managed (PNN activated sensors) and 
unmanaged (all sensors active) Monte Carlo runs (500 
iterations) are shown in Figure 6.  

 

Figure 6 - Sensor lay down with Track and Estimates 

The mean squared error computed in both cases 
(configuration-managed and unmanaged) of simulation 
runs are shown in Figure 7. A histogram of the mean 
number of sensors used in each of the 500 runs of the 
configuration-managed tracking scheme is shown in Figure 
8. As can be seen, the PNN configuration management 
strategy offers a significant reduction in the number of 
sensors used. Tracking with sensors selected by the PNN 
on average requires less than 30% of the total sensors 
deployed while resulting only in a marginal degradation of 
the tracking accuracy. As may be observed from Figure 7, 
there is only a slight increase in tracking errors (less than 
10% increase on average). 



 

 

Figure 7 - Mean Square Error from 500 Monte Carlo 
runs. 

 

 

Figure 8 - Histogram of activated sensors  

V. Conclusions 
 
The major contribution of this paper is a novel 

approach to sensor configuration management using 
probabilistic neural networks. The present strategy enables 
real-time implementation of ad hoc sensor networks 
operating in power-constrained environments for 
collaborative surveillance and tracking. Performance 
evaluation results presented here show that the number of 
activated sensors can be dramatically reduced without 
significant increases in tracking error.  Planned work for 
the future will extend the target tracking and sensor 
configuration algorithms to scenarios with multiple targets 
and diverse sensors. 
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Problem of Interest

In a Collaborative Sensor 
Network, Critical Problem is to 
Optimally Manage Sensors

Multitude of Sensors Deployed
In Arrays or Multiple Arrays

Optimal Strategies for Sensor 
Configuration Management 
Needed

Maximize Performance from 
Fusion (Collaborative Decision-
making)
Minimize Network Latency 
(due to constraints on power 
and communication bandwidth)

Basic Problem
Each sensor needs to 
dynamically make intelligent 
decisions to recruit collaborating 
partners within its neighborhood 

Typical Solutions for 
Configuration Management

Bayesian Networks, Influence 
Diagrams
Computation of “Utility” of 
Decision Made at Each Sensor 
Node.

Computational Intensity is a 
Major Bottleneck

Real-time Implementation is 
Principal Requirement

How to Break Computational 
Complexity?

Use of Trained Probabilistic 
Neural Network
Reduction of Training Effort from 
Exploiting Correspondence with 
Bayesian Network Models 



Description of Tracking Scenario 

Tracking Moving Object in a 
Sensor Field

Requires Global Information in 
Both Space and Time.
Info. Analysis Over a Time Horizon 
and Over a Spatial Region

Problem Constraints
Individual Sensor Nodes Only 
Provide Spatially Local Information
Limited Temporal Processing  (due 
to power constraints)

Needs for Intelligent Solution
Collaborative Processing
Fusion of Collected Information
Collaborative Decision-making 

N Sensors Uniformly Placed 
at  Known Locations 



Description of Tracking Scenario

Sensor Modes
At Each Time Epoch,
Individual  Sensor Configured 
“Active” or “Inactive”

Active Sensors
Collect M Samples of  
Received Signal. 
Independently Maintain 
Contact with Target 

Sensor Capabilities
Query Neighbors 
Compute and Update Own 
Decisions 
Communicate Wirelessly with 
Neighbors or with Remote 
Monitoring Station. 



Target Motion Model

Target State At Time K
Position 
Velocity

(in Cartesian 
Coordinates) 

A Discrete-time Linear 
System Driven By White 
Gaussian Noise
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Sensor Observation Model

Probability of Detection
Γ(·,·) Is the Incomplete Gamma 
Function

Probability for False Alarm
β Gives Desired Probability of 
False Alarm

Signal to Noise Ratio at Unit 
Distance From Sensor to Target

Typical Plot of Probability of 
Detection as Function of 
Distance D.
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Description of Tracking Filter

Some Sensor Detects 
Target
Particle Filter

Performs 
Bayesian 
Estimation
Initialized With 
Uniform Prior 

Particles are Re-
sampled According to 
Observations
Sensor Minimization
from Configuration 
Management 

Tracking Begins With All Sensors Making Observations 
All Observations Reported To Tracking Filter



Particle Filter Details

Computes Sampled 
Representation of Probability 
Distribution
Weighted Particles Provide 
Approximation to Posterior 
Distribution of Target State
Sequential Update at Each Time 
Epoch

Distribution of Particles 
According to Prior
Compute Weights According To 
Distance from Current 
Observations

State Estimate Obtained as 
Weighted Sum of Particles
Variance of State Estimate 
Provides Measure of Quality of 
Estimate
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Probabilistic Neural Network for 
Configuration Management 

Tracking Begins with All Activated Sensors Making Observations

Observations are Reported to Tracking Filter
Initialized With A Uniform Prior Distribution

Particles are Re-sampled According to Observations Presented

Estimate and Variance are Calculated 
Used By PNN For Sensor Configuration

Sensor 
Queries & 
Reports

Probabilis
tic Neural 
Network

Estimate 
Variance

Estimate

Particle 
FilterRadius



Probabilistic Neural Network Configuration

Prior Target Position Estimate 
Desired Probability Of Detection 
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Input to PNN 
Modified State Estimate

Variance Used In Training 
Provides For Quality of 
Estimate

Modifying Hidden Layer 
Thresholds

Generates Pd Surface
Accomplished by Adjusting 
Connection Weights With 
Variance
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Variance Of The Prior Estimate 
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I n i t i a l  P N N 
P r o b a b i l i t y 
Surface That a 
Target Will be 
Detected When 
All Sensors are 
Activated – Unit 
C o n n e c t i o n s , 
Random Sensor 
L a y - d o w n



PNN Output

Radius Parameter 
Specifies Activation Region

Centers On Previous Target 
Location Estimate

Activates Sensors In Region
Region Scaled to achieve 
Desired Pd

Bounds Maximum Activation 
Distance From The Current 
State Estimate

Used as Basis for Querying 
Sensors over Subsequent Epoch. 

kr

kkx |ˆ

Initial PNN Probability Surface That A Target Will Be 
Detected When All Sensors Are Activated – Unit 
C o n n e c t i o n s ,  U n i f o r m  S e n s o r  L a y - d o w n



Demonstration of Performance

Tracking Results – 50 Distributed 
Sensors in 1km Square Area
500 Iterations in Both Cases

All Sensors Activated
PNN Configuration Managed 

Only Marginal Increase in MSE
~1/6th Of Sensors Used

Mean Square Error From 500 Monte Carlo Runs



Conclusions

Major Contribution
Novel Approach to Sensor Configuration Management 
Using Probabilistic Neural Networks

Present Strategy Enables Real-time Implementation of 
Ad Hoc Sensor Networks

Operating in Power-constrained Environments
Collaborative Surveillance and Tracking

Performance Evaluation Results Show 
Number of Activated Sensors can be Dramatically Reduced
No Significant Increase in Tracking Error

Planned Work For Future
Extend Target Tracking and Sensor Configuration Algorithms 
to Scenarios with Multiple Targets and Diverse Sensors 
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